DPP-1(Friction)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solutionon Website:-

https://physicsaholics.com/home/courseDetails/64

https://youtu.be/B713k2I2ebE

https://physicsaholics.com/note/notesDetalis/76

Q 1. A body is moving down inclined plane of slope 37°. The coefficient of friction between the body and plane varies as $\mu=0.3 \mathrm{x}$, where x is distance traveled down the plane. The body will have maximum speed at -
$\left(\sin 37^{\circ}=\frac{3}{5}\right.$ and $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $x=1.16 \mathrm{~m}$
(b) $x=2 \mathrm{~m}$
(c) bottom of plane
(d) $x=2.5 \mathrm{~m}$

Q 2. A stationary body of mass m is slowly lowered (zero initial velocity) onto a long massive platform of mass $M(M \gg m)$ moving at a speed $V_{0}=4 \mathrm{~m} / \mathrm{s}$ as shown in fig. How far will the body slide along the platform? $\left(\mu=0.2\right.$ and $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 4 m
(b) 6 m
(c) 12 m
(d) 8 m

Q 3. A small body starts sliding down an inclined plane of inclination θ, whose base length is equal to L . The coefficient of friction between the body and the surface is μ. If the angle θ is varied keeping L constant, at what angle will the time of sliding be least?

(a) $\tan ^{-1}\left(\frac{1}{\mu}\right)$
(b) $\tan ^{-1}\left(\frac{-1}{\mu}\right)$
(c) $\frac{1}{2} \tan ^{-1}\left(\frac{1}{\mu}\right)$
(d) $\frac{1}{2} \tan ^{-1}\left(\frac{-1}{\mu}\right)$

Q 4. In the figure, what should be mass m so that block A slide up with a constant velocity?

(a) 2 Kg
(b) 1 Kg
(c) 4 Kg
(d) 2.5 Kg

Q 5. In the diagram shown in figure. Match the following table

Q 6. A block of mass 4 kg is kept over a rough horizontal surface. The coefficient of friction between the block and the surface is 0.1 . At $t=0$, velocity $3 \mathrm{~m} / \mathrm{s} \hat{\imath}$ is imparted to the block and simultaneously force $2 \mathrm{~N}(-\hat{\imath})$ starts acting on it. Its displacement in first 5 second is
(a) $8 \hat{\imath}$
(b) $-8 \hat{\imath}$
(c) $3 \hat{\imath}$
(d) $-3 \hat{\imath}$

Q 7. A long block A is at rest on a smooth horizontal surface. A small block B, whose mass is half of A , is placed on A at one end and projected along A with some velocity u . The coefficient of friction between the blocks is μ.

(a) The blocks will reach a final common velocity $u / 3$
(b) Friction on A is towards right.
(c) Before the blocks reach a common velocity, the acceleration of A relative to B is $\frac{2}{3} \mu \mathrm{~g}$.
(d) Before the blocks reach a common velocity the acceleration of A relative to B is $\frac{3}{2} \mu \mathrm{~g}$.

Q 8. Blocks A and B in the figure are connected by a bar of negligible weight and they are sliding down due to their weight. If mass of A and B are 170 kg each and $\mu_{A}=0.2$ and $\mu_{B}=0.4$, where μ_{A} and μ_{B} are the coefficients of friction between blocks and plane, calculate the force in the bar. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

(a) 150 N
(b) 75 N
(c) 200 N
(d) 250 N

Q 9. 8 kg and 6 kg blocks are moving towards each other Find m if it is moving down with acceleration $1 \mathrm{~m} / \operatorname{Sec}^{2}$?

Q 10. In given figure mass of A is 10 kg and that of B is 20 kg . friction coefficient at all surfaces is 0.5 . Find F if acceleration of A is $2 \mathrm{~m} / \mathrm{Sec}^{2}$?

(a) 150 N

(b) 210 N
(c) 260 N
(d) 310 N

Answer Key

Q. 1 d	Q. 2 a	Q. 3 d	Q. 4 b	$\mathbf{Q . 5} \underset{\mathbf{C (S)})}{\mathrm{A}(\mathbf{S}), \mathbf{B}(\mathbf{P}),}$
Q. 6 c	Q. 7 a, b, d	Q. 8 a	Q. 9 c	Q. 10 d
Q. 11	Q. 12			

